Reply #20 on: 27/04/2005 12:41:00 »
Tubular Water
One way to envision water pulled into and up a capillary tube is to use a suspension bridge model. The column of water is suspended against gravity by its adherence to the walls of the tube. Cohesive force keep all the water molecules together. Capillary movement is greater as tube diameter decreases. Extremely small diameter tubes, pores, or spaces can attract water and move it a relatively long way.
Capillary movement is responsible for within- and between-cell water movement in trees, and small pore space movements in soils. Cell wall spaces are extremely small (interfibral) and can slowly wick-up water. The water conducting tissues of trees (xylem), does not utilize capillary movement for water transport. If xylem were open at its top, a maximum capillary rise of 2-3 feet could be obtained. Xylem transport is by mass movement of water not capillary action.
Capillary movement is a matter of inches, not dragging water to the top of a 300 feet tall tree. Capillary movement components can be seen where liquid water touches the side of a glass. The water does not abruptly stop at the glass interface, but is drawn slightly up the sides of the glass. This raised rim is called a "meniscus." The meniscus is the visible sign of adhesive forces between the glass and water pulled up the side of the glass. The smaller the diameter of the glass, the greater the adhesive forces pulling-up on the water column and the less mass suspended behind.
Tiny Bubbles
Gas bubble formation in water columns is called cavitation. As temperatures rise and tension in the water column increases, more gases will fall out of solution and form small bubbles. These tiny bubbles may gather and coalesce, "snapping" the water column. As temperatures decrease, water can hold more dissolved gasses until it freezes. Freezing allows gases to escape and potentially cavitates water conducting tissue when thawed. Trees do have some limited means to reduce these cavitation faults.
On The Move
Water movement and transportation of materials is essential to tree life. The three major forms of transport are driven by diffusion, mass flow, and osmosis forces.
Diffusion – Diffusion operates over cell distances. Diffusion is the movement of dissolved materials from high concentrations areas to low concentration areas. Diffusion can move a dissolved molecule in water across a cell in a few seconds. Diffusion does not operate biologically over larger distances. It would take decades to diffuse a molecule across a distance of one yard / one meter.
Mass Flow – Most movements we visualize are due to the mass flow of materials caused by pressure differences. Wind, gravity, and transpiration forces initiate and sustain small differences in pressure. These small differences drive water and its dissolved load of materials in many different directions. Because pressure is the driving force in mass flow, (not concentration differences as in diffusion), the size of the conduit is critical to flow rates. If the radius of the conduit is doubled, volume flow increases to the fourth power of the size increase (double conduit radius and flow rate increases by 16 times — 24).
Osmosis – Osmosis is the movement of water across a membrane. Membranes in living tree cells separate and protect different processes and cellular parts. Membranes act as selective filters, preventing materials with large hydration spheres or layers from passing through. Small, uncharged materials may pass freely. The driving force to move materials in osmosis is a combination of pressure and concentration forces called a "water potential gradient."
by Dr. Kim D. Coder
Daniel B. Warnell School of Forest Resources
University of Georgia
6/99
Gravity, Learn to live with it, because you can't live without it!