You had at in the experiment a loop of tube filled with water with a height difference from the top to the bottom of more than 10m? So you have prooved that a column of water more than 10m high is stable, so why shouldn't a xylem be able to do the same thing? Especially as it has had 200million years to optmise this process.
*****Answer
A little more than 10 metres actually, 24 metres to be exact, as that was the length of tube I was using at the time.
The column of water is not stable in the tubes, cavitations is demonstrated as the stress on the water bead causes bubbles to form and the columns collapse eventually, just as they do in the tree.
*****
You are right what you were doing (injecting denser fluid near the top of the tube on one arm of a syphon loop) is not conventional syphoning, you are making one arm of the syphon heavier by using a higher density fluid rather than by using a lengthened arm, but if this works then a syphon will work.
*****Answer
Feel free to try your siphon at these heights. Ill bet you draw the same conclusion that many others have already observed as the accepted height at which a siphon will work.
Picture a loop of tubing suspended above the 10 metre limit, producing an unbroken bead of water, under the tension produced by the equal weight of the water on both sides of the tubes. Now initiate the lowering of one of the ground based bottles to try to cause a siphon. The result would be that the lowering of the one bottle would merely cause the bead of water to become elasticised and stretch to the point where it would collapse. But during the stretching process, we hypothetically inject a tiny amount of concentrated saline solution coloured, in one side of the loop at the top/upper most part of the loop. The result would be an obvious independent flow and return system, within the pre tensioned bead of water, flowing with total disregard to pressures, and creating its own pressure changes within the tension placed upon the bead of water.
This flow system does not require pressure in order to function, but delivers pressures as it functions.
*****
If the water column has not cavitated there is no reason why it shouldn't syphon - the reason why it is often said that you can't syphon over 34 feet is that the fluid will have a tendancy to cavitate. How far did you lower your bottle, and for how long? If your tube was 150feet long a the system will have a resonant period of about 45 seconds (assuming that there is no damping, which would make this period longer), so to definitely see any effect you would have had to wait at least this long.
*****Answer
Wrong, there is a fundamental reason why siphon does not occur as explained above.
The bottle was lowered 2 steps, presumably around half a metre, as I did not measure the steps, and remained for well over your 45 seconds without any evidence of siphon.
What you describe in your 'tubular experiments' sounds entirely reasonable to me and exactly what I would expect to happen from standard physics, but I don't see how it would apply to a tree.
*****Answer
According to the points you raise above, this is not quite correct, as your understanding of the siphon does not apply here.
*****
Although you get a downward flow of sugars through the Phloem and an upward flow through the Xylem, as you mentioned earlier, 98% of the water that is lifted up is evapourated, so the less than 2% of water going down would have to lift 20 times that amount of water.
*****Answer
This paradigm can lift many thousands of times the volume going up, and only requires a minute of solutes flowing down to cause the greater volume of less dense solution to flow up, giving the tree more than enough water to evaporate and produce a denser sap.
*****
For the syphon device you describe in the link to work the weight on the downward side must be greater than the upward side or it obviously won't work. Unless the density of the sugar solution is 50 times that of the water coming up I don't see how this could work.
*****Answer
This is where you go wrong David: imagine a 24 mil bore tube on one side and a 6 mil bore tube on the other side, blended seamlessly together to form a single looped open ended tube of different sizes immersed at equal levels in two bottles of water, suspended 24 metres vertically by the centre. The weight of the 24 mil bore side of the loop will be counterbalanced exactly by the 6 mil bore side of the tube, with no net movement either way. Now add the tiny amount of salt to the 6 mil bore side at the centre and circulation begins. In the case of the tree, the structure and size differences of the tubes compensates for the loss of moisture through the leaves and returns the resulting concentrates back towards the ground.
btw. You came to a hands on science event I was running in Brixham a couple of years ago.
I do remember popping in the town hall now you mention it, as you were closing your event I believe.
Thank you for remembering me.
Andrew
Gravity, Learn to live with it, because you can't live without it!